Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Poly(N-isopropylacrylamide) (PNIPAM) in aqueous solution forms mesoglobules above its cloud point temperature T cp . While these are small and compact at atmospheric pressure, they are large and water-rich at high pressure. To identify the transition between these states, we employed optical microscopy and carried out isothermal pressure scans. Using very small angle neutron scattering, we determined the size and water content of the mesoglobules in pressure scans at different temperatures above T cp . We observe a distinct transition at pressures of 35−55 MPa with the transition pressure depending on temperature. While the transition is smooth at high temperatures, i.e., far away from the coexistence line, it is abrupt at low temperatures, i.e., close to the coexistence line. Hence, at high temperatures, the swelling of the mesoglobules dominates, whereas at low temperatures, the coalescence of mesoglobules prevails. Subsequently decreasing the pressure results in a gradual deswelling of the mesoglobules at high temperature. In contrast, at low temperatures, small and compact mesoglobules form, but the large aggregates persist. We conclude that, on the time scale of the experiment, the disintegration of the large swollen aggregates into small and compact mesoglobules is only partially possible. Erasing the history by cooling the sample at the maximum pressure into the one-phase state does not result in qualitative changes for the behavior with the only difference that Fewer mesoglobules are formed when the pressure is decreased again. The newly identified transition line separates the low-pressure from the high-pressure regime.
Poly(N-isopropylacrylamide) (PNIPAM) in aqueous solution forms mesoglobules above its cloud point temperature T cp . While these are small and compact at atmospheric pressure, they are large and water-rich at high pressure. To identify the transition between these states, we employed optical microscopy and carried out isothermal pressure scans. Using very small angle neutron scattering, we determined the size and water content of the mesoglobules in pressure scans at different temperatures above T cp . We observe a distinct transition at pressures of 35−55 MPa with the transition pressure depending on temperature. While the transition is smooth at high temperatures, i.e., far away from the coexistence line, it is abrupt at low temperatures, i.e., close to the coexistence line. Hence, at high temperatures, the swelling of the mesoglobules dominates, whereas at low temperatures, the coalescence of mesoglobules prevails. Subsequently decreasing the pressure results in a gradual deswelling of the mesoglobules at high temperature. In contrast, at low temperatures, small and compact mesoglobules form, but the large aggregates persist. We conclude that, on the time scale of the experiment, the disintegration of the large swollen aggregates into small and compact mesoglobules is only partially possible. Erasing the history by cooling the sample at the maximum pressure into the one-phase state does not result in qualitative changes for the behavior with the only difference that Fewer mesoglobules are formed when the pressure is decreased again. The newly identified transition line separates the low-pressure from the high-pressure regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.