Temperature sensitive random linear and crosslinked copolymers of N-tert-butylacrylamide (NTBA) and acrylamide (Am) were synthesized by the solution polymerization method, using regulated dosing of comonomer Am having a higher reactivity ratio (r Am ϭ 1.5) than NTBA (r NTBA ϭ 0.5). Copolymers with varying feed ratios of NTBA and Am (80 : 20 to 20 : 80 mol %) were synthesized and characterized. For the synthesis of copolymer hydrogels, NЈ, N-methylene bisacrylamide (MBA) (1.13 mol %) was used along with monomers. The effect of composition on transition properties was evaluated for the linear copolymers and their hydrogels. A definite trend was observed. The incorporation of a higher percentage of the hydrophilic comonomer Am in the structure resulted in the shifting of the transition temperature towards a higher value. The transition temperatures of the copolymers synthesized with feed compositions of 80 : 20, 70 : 30, 60 : 40, 50 : 50, 40 : 60, 30 : 70, and 20 : 80 mol % were found to be 2, 10, 19, 27, 37, 45, and 58°C, respectively. Differential scanning calorimetry (DSC) studies confirmed the formation of random copolymers. The copolymers synthesized with a monomer feed ratio of 50 : 50 with regulated dosing showed a single glass transition temperature (T g ) at 168°C, while the copolymer synthesized with full dosing of Am at the beginning of the reaction showed two T g s, at 134 and 189°C. The copolymer samples were analyzed by Fourier transform infrared spectroscopy (FTIR) for ascertaining the composition. The composition of the copolymers followed the trend of the feed ratio, but the incorporation of NTBA in the copolymers was found to be lower than the feed ratio because of lower than quantitative yields of the reactions.