Abstract:Reinforcement learning models have been extensively studied for decision-making tasks with reward feedback. However, in designing an experiment to collect data for Q-learning models, the quantitative effect of a presented stimulus on the estimation precision of participant parameters has generally not been considered. That is, the lack of a mathematical framework has prevented researchers from designing an optimal experiment. To tackle this problem, this study analytically derives Fisher information. Furthermo… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.