Self-assembled
metallo-organic
cages have emerged as promising
biomimetic platforms that can encapsulate whole substrates akin to
an enzyme active site. Extensive experimental work has enabled access
to a variety of structures, with a few notable examples showing catalytic
behavior. However, computational investigations of metallo-organic
cages are scarce, not least due to the challenges associated with
their modeling and the lack of accurate and efficient protocols to
evaluate these systems. In this review, we discuss key molecular principles
governing the design of functional metallo-organic cages, from the
assembly of building blocks through binding and catalysis. For each
of these processes, computational protocols will be reviewed, considering
their inherent strengths and weaknesses. We will demonstrate that
while each approach may have its own specific pitfalls, they can be
a powerful tool for rationalizing experimental observables and to
guide synthetic efforts. To illustrate this point, we present several
examples where modeling has helped to elucidate fundamental principles
behind molecular recognition and reactivity. We highlight the importance
of combining computational and experimental efforts to speed up supramolecular
catalyst design while reducing time and resources.