2021
DOI: 10.21108/ijoict.v7i2.553
|View full text |Cite
|
Sign up to set email alerts
|

STL Decomposition and SARIMA Model: The Case for Estimating Value-at-Risk of Covid-19 Increment Rate in DKI Jakarta

Abstract: In this research, we propose an extreme values measure, the Value-at-Risk (VaR) based Seasonal Trend Loess (STL) Decomposition and Seasonal Autoregressive Integrated Moving Average (SARIMA) models, which is more sensitive to the seasonality of extreme value than the conventional VaR. We consider the problem of the seasonality and extreme value for increment rate of Covid-19 forecasting. For stakeholder, government and regulator, VaR estimation can be implemented to face the extreme wave of new positive Covid-1… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?