We are concerned with a stochastic mean curvature flow of graphs over a periodic domain of any space dimension. For the first time, we are able to construct martingale solutions which satisfy the equation pointwise and not only in a generalized (distributional or viscosity) sense. Moreover, we study their large-time behavior. Our analysis is based on a viscous approximation and new global bounds, namely, an $$L^{\infty }_{\omega ,x,t}$$
L
ω
,
x
,
t
∞
estimate for the gradient and an $$L^{2}_{\omega ,x,t}$$
L
ω
,
x
,
t
2
bound for the Hessian. The proof makes essential use of the delicate interplay between the deterministic mean curvature part and the stochastic perturbation, which permits to show that certain gradient-dependent energies are supermartingales. Our energy bounds in particular imply that solutions become asymptotically spatially homogeneous and approach a Brownian motion perturbed by a random constant.