A properly implemented maintenance management system has an impact at different levels. Maintenance is defined as the set of actions to maintain a property in a specified state. The unavailability of the spare parts required, to carry out the maintenance intervention, causes an extension of the inactivity time of the installation. On the contrary, an excessive stock of spare parts confines enormous capital and entails an enormous cost of ownership. According to the literature already made, we have directed in our work to propose a model of joint management of maintenance and spare parts based on stochastic-deterministic batch Petri networks. We studied this model by simulation using a graphical interface dedicated to the graphical tool used. So, we present, in this paper, the analytical study of the model by defining the performance indicators and viewing the influence of system parameters on these indicators. The main stages of the analytical study are developing the μ-marking graph, the associated Markov process which gives the associated transition matrix, and the definition of performance indicators using the probability distribution of the states. We deal with an application of the analytical evaluation of the proposed model. We end this article with an analysis and synthesis.