A generally applicable strategy to obtain mechanically robust hydrogels for the incorporation and containment of functional reporter bacteria for the microarray and microparticle-based detection and signaling of N-acyl homoserine lactone autoinducers (3OC HSL) at relevant concentrations is reported. For reinforcing hydrogels of 1,4-bi(phenylalanine-diglycol)-benzene (PDB), a hybrid hydrogel is formed by the combination of PDB self-assembly with Ca mediated alginate crosslinking. The different assembly mechanisms are shown not to interfere with each other and despite the more than four-fold increased moduli of the hydrogels, diffusion of autoinducers into the gels remains efficient and Escherichia coli pLuxR-green fluorescent protein (GFP) reporter bacteria are proliferating. Templating affords reporter bacteria-loaded hydrogels with controllable shape and size. Upon exposure to 3OC HSL, the embedded bacteria exhibit an up to 12 ± 3 times increase in fluorescence intensity due to autoinducer-triggered GFP expression. This approach can serve as a potentially generally applicable strategy to sensitively detect bacteria via their secreted autoinducers.