In this paper, a retrial queueing system of the M/M/1 type with Poisson flows of arrivals, impatient customers, collisions, and an unreliable service device is considered. To make the problem more realistic and, hence, more complicated, we include the breakdowns and repairs of the service in this research study. The retrial times of customers in the orbit, service time, impatience time of customers in the orbit, server’s lifetime (depending on whether it is idle or busy), and server recovery time are supposed to be exponentially distributed. The problem of finding the stationary probability distribution of the number of customers in orbit is solved by using the method of asymptotic diffusion analyses under the condition of a heavy load of the system and the patience of customers in orbit. Numerical results are presented that demonstrate the effectiveness of the obtained theoretical conclusions, and a comparative analysis of the method of asymptotic analysis and the method of asymptotic diffusion analysis for the considered problem is given.