Hybrid deterministic stochastic systems with microscopic look-ahead dynamics.
Communications in Mathematical Sciences
AbstractWe study the impact of stochastic mechanisms on a coupled hybrid system consisting of a general advection diffusion reaction partial differential equation and a spatially distributed stochastic lattice noise model. The stochastic dynamics include both spin-flip and spin-exchange type inter-particle interactions. Furthermore, we consider a new, asymmetric, single exclusion process, studied elsewhere in the context of traffic flow modeling, with an one-sided interaction potential which imposes advective trends on the stochastic. This is our look-ahead stochastic mechanism which is responsible for rich nonlinear behavior in solutions.Our approach relies heavily on first deriving approximate differential mesoscopic equations. These approximations become exact either in the long range, Kac interaction partial differential equation case, or, given sufficient time separation conditions, between the partial differential equation and the stochastic model giving rise to a stochastic averaging partial differential equation. Although these approximations can in some cases be crude, they can still give a first indication, via linearized stability analysis, of the interesting regimes for the stochastic model.Motivated by this linearized stability analysis we choose particular regimes where interacting nonlinear stochastic waves are responsible for phenomena, such as random switching, convective instability and metastability, all driven by stochastisity. Numerical kinetic Monte Carlo simulations of the coarse grained hybrid system are implemented to assist in producing solutions and understanding their behavior.