1987
DOI: 10.1299/kikaia.53.1197
|View full text |Cite
|
Sign up to set email alerts
|

Stochastic finite element analysis of thermal deformation and thermal stresses of CFRP laminated plates. In problems of probabilistic fiber orientations.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2012
2012
2020
2020

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…Nakamura et al [37] conducted a similar study for the case of uncertain Young's modulus, tensile and compressive strengths, and ambient temperature by using the first-order approximation theory. In addition, an interesting study on the stochastic finite element analysis of a thermal deformation problem was reported for a carbon fiber reinforced plastic (CFRP)-laminated plate whose fiber orientation angle is random [71]. Using the stochastic FEM, Sluzalec [73] analyzed the thermoelastic deflection of a rectangular plate subjected to a thermal and mechanical load concentrated at the center, where the plate has material properties and a thickness given by a two-dimensional random field.…”
Section: Case Of Random Materials Propertiesmentioning
confidence: 99%
“…Nakamura et al [37] conducted a similar study for the case of uncertain Young's modulus, tensile and compressive strengths, and ambient temperature by using the first-order approximation theory. In addition, an interesting study on the stochastic finite element analysis of a thermal deformation problem was reported for a carbon fiber reinforced plastic (CFRP)-laminated plate whose fiber orientation angle is random [71]. Using the stochastic FEM, Sluzalec [73] analyzed the thermoelastic deflection of a rectangular plate subjected to a thermal and mechanical load concentrated at the center, where the plate has material properties and a thickness given by a two-dimensional random field.…”
Section: Case Of Random Materials Propertiesmentioning
confidence: 99%