Abstract. In order to design viscoelastic sandwich structures used as passive damping treatment, many aspects should be considered. In all methods available in the literature to model Viscoelastic Materials (VEM) a crucial step is the determination of the complex modulus, usually obtained by curve fitting experimental results. Considering that dispersions are inherent to experimental tests and also those small variations in the fitted parameters lead to considerable changes on the dynamic behavior of VEMs hence a nondeterministic model seems to be more suitable than the usual deterministic ones. In that way, starting from dynamic properties of a VEM, a nondeterministic numerical model, which takes into account incertitudes in the VEM curve fitting procedure, is proposed. This model was used to evaluate the behavior of sandwich structures, showing the advantages and disadvantages of the presented methodology, comparing damping ratios and natural frequencies results of experimental tests with the ones extracted from the proposed nondeterministic numerical GHM based model, in order to establish a method to support viscoelastic sandwich beams design.