Abstract. The two-layer quasigeostrophic flow model is an intermidiate system between the single-layer 2D barotropic flow model and the continuously stratified, 3D baroclinic flow model. This model is widely used to investigate basic mechanisms in geophysical flows, such as baroclinic effects, the Gulf Stream and subtropical gyres. The wind forcing acts only on the top layer. We consider the two-layer quasigeostrophic model under stochastic wind forcing. We first transformed this system into a coupled system of random partial differential equations and then show that the asymptotic probabilistic dynamics of this system depends only on the top fluid layer. Namely, in the probability sense and asymptotically, the dynamics of the two-layer quasigeostrophic fluid system is determinied by the top fluid layer, or, the bottom fluid layer is slaved by the top fluid layer. This conclusion is true provided that the Wiener process and the fluid parameters satisfy a certain condition. In particular, this latter condition is satisfied when the trace of the covariance operator of the Wiener process is controled by a certain upper bound, and the Ekman constant r is sufficiently large. Note that the generalized time derivative of the Wiener process models the fluctuating part of the wind stress forcing on the top fluid layer, and the Ekman constant r measures the rate for vorticity decay due to the friction in the bottom Ekman layer.