IEEE Workshop on Statistical Signal Processing, 2003
DOI: 10.1109/ssp.2003.1289431
|View full text |Cite
|
Sign up to set email alerts
|

Stochastic grammars for images on arbitrary graphs

Abstract: We describe a class of multiscale stochastic processes based on stochastic context-free grammars and called spatial random trees (SRTs) which can be effectively used for modeling multidimensional signals. In addition to modeling images which are sampled on a regular rectangular grid, we generalize this methodology to images defined on arbitraly graph structures. We develop likelihood calculation, MAP estimation, and EM-based parameter estimation algorithms for SRTs. To illustrate these methods, we apply them t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0
1

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 0 publications
0
0
0
1
Order By: Relevance
“…e[34] o modelo probabilístico hierárquico SRT. A principal contribuição desses trabalhosé a introdução de classes de distribuição de probabilidades sobre asárvores para cálculos exatos da verossimilhança em tempo polinomial.…”
unclassified
“…e[34] o modelo probabilístico hierárquico SRT. A principal contribuição desses trabalhosé a introdução de classes de distribuição de probabilidades sobre asárvores para cálculos exatos da verossimilhança em tempo polinomial.…”
unclassified