We revisit the classic problem of elastic cavitation within the framework of stochastic elasticity. For the deterministic elastic problem, involving homogeneous isotropic incompressible hyperelastic spheres under radially symmetric tension, there is a critical dead-load traction at which cavitation can occur for some materials. In addition to the well-known case of stable cavitation postbifurcation at the critical dead load, we show the existence of unstable snap cavitation for some isotropic materials satisfying Baker-Ericksen inequalities. For the stochastic problem, we derive the probability distribution of the deformations after bifurcation. In this case, we find that, due to the probabilistic nature of the material parameters, there is always a competition between the stable and unstable states. Therefore, at a critical load, stable or unstable cavitation occurs with a given probability, and there is also a probability that the cavity may form under smaller or greater loads than the expected critical value. We refer to these phenomena as 'likely cavitation'. Moreover, we provide examples of homogeneous isotropic incompressible materials exhibiting stable or unstable cavitation together with their stochastic equivalent.We recall that a homogeneous hyperelastic model is described by a strain-energy function W (F) that depends on the deformation gradient tensor, F, with respect to a fixed reference configuration, and is characterised by a set of deterministic model parameters [14,39,57]. In contrast, a stochastic homogeneous hyperelastic model is defined by a stochastic strain-energy function, for which the model parameters are random variables that satisfy standard probability laws [35,[52][53][54]. In this case, each model parameter is described in terms of its mean value and its variance, which contains information about the range of values about the mean value. While it is rarely possible if ever to obtain complete information about a random quantity in an elastic sample of material, the partial information provided