We consider a stochastic individual-based model of adaptive dynamics on a finite trait graph $$G=(V,E)$$
G
=
(
V
,
E
)
. The evolution is driven by a linear birth rate, a density dependent logistic death rate and the possibility of mutations along the directed edges in E. We study the limit of small mutation rates for a simultaneously diverging population size. Closing the gap between Bovier et al. (Ann Appl Probab 29(6):3541–358, 2019) and Coquille et al. (Electron J Probab 26:1–37, 2021) we give a precise description of transitions between evolutionary stable conditions (ESC), where multiple mutations are needed to cross a valley in the fitness landscape. The system shows a metastable behaviour on several divergent time scales, corresponding to the widths of these fitness valleys. We develop the framework of a meta graph that is constituted of ESCs and possible metastable transitions between them. This allows for a concise description of the multi-scale jump chain arising from concatenating several jumps. Finally, for each of the various time scales, we prove the convergence of the population process to a Markov jump process visiting only ESCs of sufficiently high stability.