1997
DOI: 10.1111/j.1540-5915.1997.tb01326.x
|View full text |Cite
|
Sign up to set email alerts
|

Stochastic Judgments in the AHP: The Measurement of Rank Reversal Probabilities

Abstract: This paper presents a methodology for analyzing Analytic Hierarchy Process (AHP) rankings if the pairwise preference judgments are uncertain (stochastic). If the relative preference statements are represented by judgment intervals, rather than single values, then the rankings resulting from a traditional (deterministic) AHP analysis based on single judgment values may be reversed, and therefore incorrect. In the presence of stochastic judgments, the traditional AHP rankings may be stable or unstable, depending… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
21
0

Year Published

1997
1997
2021
2021

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 49 publications
(21 citation statements)
references
References 26 publications
0
21
0
Order By: Relevance
“…Similarly probabilistic models for practical decision support are harder to find, although using the cumulative probability distribution (risk function) for each score and the identification of stochastic dominance has been proposed (Moskowitz, Tang and Lam 2000) as have the modelling of a probability distribution of the rank of each alternative (Bañuelas and Antony 2007;Jessop 2002;Butler, Jia and Dyer 1997) and the probability of rank reversal (Stam and Duarte Silva 1997;Saaty and Vargas 1987).…”
Section: Uncertainty About Weightsmentioning
confidence: 99%
See 1 more Smart Citation
“…Similarly probabilistic models for practical decision support are harder to find, although using the cumulative probability distribution (risk function) for each score and the identification of stochastic dominance has been proposed (Moskowitz, Tang and Lam 2000) as have the modelling of a probability distribution of the rank of each alternative (Bañuelas and Antony 2007;Jessop 2002;Butler, Jia and Dyer 1997) and the probability of rank reversal (Stam and Duarte Silva 1997;Saaty and Vargas 1987).…”
Section: Uncertainty About Weightsmentioning
confidence: 99%
“…The most frequently cited method is the eigenvector model of Saaty (1977). A number of studies have used simulation to investigate the effects of uncertainty on the ranking of alternatives found in this way (Bañuelas and Antony 2007;Lipovetsky and Tishler 1999;Levary and Wan 1998;Stam and Duarte Silva 1997;Hauser and Tadikamalla 1996;Saaty and Vargas 1987;Vargas 1982). …”
Section: Sources Of Uncertaintymentioning
confidence: 99%
“…Arbel and Vargas 1993, Butler et al 1997, Stam and Silva 1997. The main advantage of this method is that one gets a lot of information, such as mean values, variances and fractiles, about the characteristics of the decision model subject to uncertainties.…”
Section: Sensitivity Analyses -Why and How?mentioning
confidence: 99%
“…Saaty and Vargas' method, whilst tractable, appears cumbersome and impractical: there is a requirement to perform a full-scale simulation each time uncertainty arises in a discrete multicriteria decision problem. Furthermore, Stam and Silva (1994) criticize Saaty and Vargas (1987) on several counts. For instance, (i) the method used to construct their impact score intervals is questioned (it is dependent on the level of confidence used) and (ii) the impact score interval for each component of the right principal eigenvector is computed independently of that for each other component, ignoring the possibility of correlation between components, which Stam and Silva show may not be insignificant.…”
Section: Introductionmentioning
confidence: 99%