Most of the existing studies on high dams under seismic action use stable ground motions, which cannot simulate the non-stationary process of practical ground motions well. Although many scholars have studied the special characteristics of ground motion frequency and intensity lately, relatively few systematic studies have been carried out for the residual deformation of practical high dam projects. In this paper, considering the special characteristics of ground motions, 144 non-stationary stochastic seismic acceleration time histories are generated by the spectral expression-random function method, and stochastic dynamic calculations are carried out for four three-dimensional models of Gushui, Lava, Dashixia, and Ciha Gorge, respectively. We analyze the acceleration and residual deformation laws of four concrete face rockfill dams (CFRDs) based on the generalized probability density evolution method (GPDEM) and extreme value distribution theory. According to the results, the reference value of the dam body deformation of the 250 m panel under different seismic intensities is given, and the settlement at the dam crest is proposed. When the safety control standard is 1.0~1.1%, the ultimate seismic capacity of the 250 m face rockfill dam is 0.7~0.8 g.