The coastal crustal deformation caused by ocean tidal loading (OTL) varies spatially and temporally, and this spatiotemporal variation in satellite-based interferometric synthetic aperture radar (InSAR) measurements needs to be determined. In this paper, we propose a spatiotemporal modeling method to estimate the OTL displacements in InSAR measurements using the kinematic precise point positioning (PPP) solutions of a regional GPS network. We tested the method through an experiment using 25 Sentinel-1B images and long-term observations of 172 GPS reference sites from Southern California. The experimental results suggest that there are significant OTL and solid Earth tide effects in the differential InSAR interferogram, which is greater than 40 mm. We find that the spatial characteristics of OTL variations can be expressed as a high-order polynomial in the two variables of latitude and longitude, and the spatiotemporally modeled PPP tidal estimates of the high-density GPS sites can provide high precision OTL correction for all the pixels in the interferogram. In the last part of the study, we show that the spatial large-scale signals in the differential interferograms of Sentinel-1B data are mainly atmospheric delay, solid Earth tidal and OTL effect, and demonstrate the importance of the tidal correction in the InSAR measurements.