Virus infection dynamics is governed by the processes on multiple scales: on the whole organism level, tissue level, and intracellular level. In this paper, we develop a multi-scale multi-compartment model of HIV infection in a simplified setting and the computational methods for numerical realization of the model. The multiscale model describes the processes from various scales and of different nature (cell motility, virus diffusion, intracellular virus replication). Intracellular replication model is based on a Markov chain with time-inhomogeneous propensities that depend on the extracellular level of virions. Reaction diffusion equations used to model free virion diffusion in the lymphoid tissue have moving sources, which are determined by the positions of the infected cells (immune cell motility model) and the rate of virion secretion from them (intracellular model). Immune cell motility model parameterizes the intercellular interaction forces, friction and the stochastic force of active cell motility. Together, this allows for a proper description of the intracellular stochasticity that propagates across multiple scales. A hybrid discrete-continuous stochastic-deterministic algorithm for simulation of the multiscale model based on the uniformization Monte Carlo method is implemented.