In the context of ecosystem-based fisheries management (EBFM), multi-species models offer a potential alternative to traditional single-species models for managing key species, particularly in mixed-fishery settings. These models account for interactions between different species, providing a more holistic approach to fisheries compared to traditional single-species management. There is currently no comprehensive list or recent analysis of the diverse methods used to account for species interactions in fisheries worldwide. We conducted a systematic review to objectively present the current multi-species models used in fisheries. The systematic search identified 86 multi-species models, which were then evaluated to assess their similarities. Employing a clustering analysis, three distinct groups were identified: extensions of single-species/dynamic multi-species models, aggregated ecosystem models, and end-to-end/coupled and hybrid models. The first group was among the most diverse, owing to their ability to integrate biological components, while maintaining an intermediate level of complexity. The second group, primarily defined by the EwE method, features an aggregated biomass pool structure incorporating biological components and environmental effects. The third cluster featured the most complex models, which included a comprehensive representation of size and age structure, the ability to incorporate biological components and environmental effects, as well as spatial representation. The application of these methods is primarily concentrated on small pelagic and demersal species from North America and Europe. This analysis provides a comprehensive guide for stakeholders on the development and use of multi-species models, considering data constraints and regional contexts.