In organisms with complex life cycles, the various stages occupy different habitats creating demographically open populations. The dynamics of these populations will depend on the occurrence and timing of stochastic influences relative to demographic density dependence, but understanding of these fundamentals, especially in the face of climate warming, has been hampered by the difficulty of empirical studies.
Using a logically feasible organism, we conducted a replicated density‐perturbation experiment to manipulate late‐instar larvae of nine populations of a stream caddisfly, Zelandopsyche ingens, and measured the resulting abundance over 2 years covering the complete life cycle of one cohort to evaluate influences on dynamics.
Negative density feedback occurred in the larval stage, and was sufficiently strong to counteract variation in abundance due to manipulation of larval density, adult caddis dispersal in the terrestrial environment as well as downstream drift of newly hatched and older larvae in the current. This supports theory indicating regulation of open populations must involve density dependence in local populations sufficient to offset variability associated with dispersal, especially during recruitment, and pinpoints the occurrence to late in the larval life cycle and driven by food resource abundance.
There were large variations in adult, egg mass and early instar abundance that were not related to abundance in the previous stage, or the manipulation, pointing to large stochastic influences. Thus, the results also highlight the complementary nature of stochastic and deterministic influences on open populations. Such density dependence will enhance population persistence in situations where variable dispersal and transitioning between life stages frequently creates mismatches between abundance and the local availability of resources, such as might become more common with climate warming.