We address brittle fracture in anisotropic materials featuring two-fold and four-fold symmetric fracture toughness. For these two classes, we develop two variational phasefield models based on the family of regularizations proposed by Focardi (Focardi, M. On the variational approximation of free-discontinuity problems in the vectorial case. Math. Models Methods App. Sci., 11:663-684, 2001), for which Γ-convergence results hold. Since both models are of second order, as opposed to the previously available fourth-order models for four-fold symmetric fracture toughness, they do not require basis functions of C 1 -continuity nor mixed variational principles for finite element discretization. For the four-fold symmetric formulation we show that the standard quadratic degradation function is unsuitable and devise a procedure to derive a suitable one. The performance of the new models is assessed via several numerical examples that simulate anisotropic fracture under anti-plane shear loading. For both formulations at fixed displacements (i.e. within an alternate minimization procedure), we also provide some existence and uniqueness results for the phase-field solution.