This paper investigates voltage regulation in low voltage (LV) networks under different loading conditions of a supply network, with increased levels of distributed generation, and in particular with a diverse range of locational solar photovoltaic (PV) penetration. This topic has been researched extensively, with beneficial impacts expected up to a certain point when reverse power flows begin to negatively impact customers connected to the distribution system. In this paper, a voltage-based approach that utilizes novel voltage-based reliability indices is proposed to analyse the risk and reliability of the LV supply feeder, as well as its PV hosting capacity. The proposed indices are directly comparable to results from a probabilistic reliability assessment. The operation of the network is simulated for different PV scenarios to investigate the impacts of increased PV penetration, the location of PV on the feeder, and loading conditions of the MV supply network on the reliability results. It can be seen that all reliability indices improve with increased PV penetration levels when the supply network is heavily loaded and conversely deteriorate when the supply network is lightly loaded. Moreover, bus voltages improve when an on-load tap changer is fitted at the secondary trans-former which leads to better reliability performance as the occurrence and duration of low voltage violations are reduced in all PV scenarios. The approach in this paper is opposed to the conventional reliability assessment, which considers sustained interruptions to customers caused by failure of network components, and thus contributes to a comprehensive analysis of quality of service by considering transient events (i.e., voltage related) in the LV distribution network.