Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The quick response (QR) system that can cope with demand volatility by shortening lead time has been well studied in the literature. Much of the existing literature assumes implicitly or explicitly that the manufacturers under QR can always meet the demand because the production capacity is always sufficient. However, when the order comes with a short lead time under QR, availability of the manufacturer's production capacity is not guaranteed. This motivates us to explore QR in supply chains with stochastic production capacity. Specifically, we study QR in a two-echelon supply chain with Bayesian demand information updating. We consider the situation where the manufacturer's production capacity under QR is uncertain. We first explore how stochastic production capacity affects supply chain decisions and QR implementation. We then incorporate the manufacturer's ability to expand capacity into the model. We explore how the manufacturer determines the optimal capacity expansion decision, and the value of such an ability to the supply chain and its agents. Finally, we extend the model to the two-stage two-ordering case and derive the optimal ordering policy by dynamic programming. We compare the single-ordering and two-ordering cases to generate additional managerial insights about how ordering flexibility affects QR when production capacity is stochastic. We also explore the transparent supply chain and find that our main results still hold. KEYWORDSBayesian information updating, flexible capacity, quick response supply chain, random demand and capacity 1 126
The quick response (QR) system that can cope with demand volatility by shortening lead time has been well studied in the literature. Much of the existing literature assumes implicitly or explicitly that the manufacturers under QR can always meet the demand because the production capacity is always sufficient. However, when the order comes with a short lead time under QR, availability of the manufacturer's production capacity is not guaranteed. This motivates us to explore QR in supply chains with stochastic production capacity. Specifically, we study QR in a two-echelon supply chain with Bayesian demand information updating. We consider the situation where the manufacturer's production capacity under QR is uncertain. We first explore how stochastic production capacity affects supply chain decisions and QR implementation. We then incorporate the manufacturer's ability to expand capacity into the model. We explore how the manufacturer determines the optimal capacity expansion decision, and the value of such an ability to the supply chain and its agents. Finally, we extend the model to the two-stage two-ordering case and derive the optimal ordering policy by dynamic programming. We compare the single-ordering and two-ordering cases to generate additional managerial insights about how ordering flexibility affects QR when production capacity is stochastic. We also explore the transparent supply chain and find that our main results still hold. KEYWORDSBayesian information updating, flexible capacity, quick response supply chain, random demand and capacity 1 126
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.