Most knock controllers respond to knock events which are defined according to some threshold knock intensity. Multi-threshold knock events offer more informative feedback since they encode not just the occurrence of knock events but also some measure of their intensity. While this has the potential for improved control, it is hard to assess the extent to which any benefits are truly realized because (in common with all knock control systems) the results of any single experiment or simulation depends on the random arrival of knock events in that instance. In this article, methods are developed instead to compute the statistical properties of the closed-loop response of a general multi-threshold knock controller, thereby providing a much more complete and rigorous characterization of its performance than has previously been possible. The method is applied to single- and dual-threshold knock controllers and used to provide a rigorous comparison of the transient and steady-state performance of these different control laws. The method can also be used as a calibration aid to assess the effects of different controller gains in reliable, repeatable fashion.