This study is concerned with Large Eddy Simulation of liquid jet atomization using a two-way coupled Eulerian-Lagrangian multiscale approach. The proposed framework combines Volume-of-Fluid interface capturing with Lagrangian Particle Tracking. The former is used to compute the core jet and large liquid elements in the near-nozzle region, whereas the latter is used to track the large number of small droplets in the dilute downstream region of the spray. The convective and surface tension sub-grid scale terms arising in the context of two-phase flow LES are closed using suitable models, and secondary atomization is considered by employing a modified version of the Taylor Analogy Breakup model. The introduced framework is used to simulate an oil-in-air atomization as well as the Diesel-like Spray A test case of the Engine Combustion Network. Compared to previous studies based on Eulerian-Lagrangian methods, the present work stands out for the high-fidelity numerical approach, the complex test cases and the detailed comparison of the results to experimental data, which indicates a promising performance.