Variational inequalities are a broad and flexible class of problems that includes minimization, saddle point, fixed point problems as special cases. Therefore, variational inequalities are used in a variety of applications ranging from equilibrium search to adversarial learning. Today's realities with the increasing size of data and models demand parallel and distributed computing for real-world machine learning problems, most of which can be represented as variational inequalities. Meanwhile, most distributed approaches has a significant bottleneck -the cost of communications. The three main techniques to reduce both the total number of communication rounds and the cost of one such round are the use of similarity of local functions, compression of transmitted information and local updates. In this paper, we combine all these approaches. Such a triple synergy did not exist before for variational inequalities and saddle problems, nor even for minimization problems. The methods presented in this paper have the best theoretical guarantees of communication complexity and are significantly ahead of other methods for distributed variational inequalities. The theoretical results are confirmed by adversarial learning experiments on synthetic and real datasets.