2023
DOI: 10.48550/arxiv.2301.12461
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Stochastic Wasserstein Gradient Flows using Streaming Data with an Application in Predictive Maintenance

Abstract: We study estimation problems in safety-critical applications with streaming data. Since estimation problems can be posed as optimization problems in the probability space, we devise a stochastic projected Wasserstein gradient flow that keeps track of the belief of the estimated quantity and can consume samples from online data. We show the convergence properties of our algorithm. Our analysis combines recent advances in the Wasserstein space and its differential structure with more classical stochastic gradien… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?