2023
DOI: 10.1093/imaiai/iaad014
|View full text |Cite
|
Sign up to set email alerts
|

Stochastic zeroth-order gradient and Hessian estimators: variance reduction and refined bias bounds

Abstract: We study stochastic zeroth-order gradient and Hessian estimators for real-valued functions in $\mathbb{R}^n$. We show that, via taking finite difference along random orthogonal directions, the variance of the stochastic finite difference estimators can be significantly reduced. In particular, we design estimators for smooth functions such that, if one uses $ \varTheta \left ( k \right ) $ random directions sampled from the Stiefel manifold $ \text{St} (n,k) $ and finite-difference granularity $\delta $, the va… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 17 publications
0
0
0
Order By: Relevance