We consider a class of stochastic evolution equations that include in particular the stochastic Camassa–Holm equation. For the initial value problem on a torus, we first establish the local existence and uniqueness of pathwise solutions in the Sobolev spaces $$H^s$$
H
s
with $$s>3/2$$
s
>
3
/
2
. Then we show that strong enough nonlinear noise can prevent blow-up almost surely. To analyze the effects of weaker noise, we consider a linearly multiplicative noise with non-autonomous pre-factor. Then, we formulate precise conditions on the initial data that lead to global existence of strong solutions or to blow-up. The blow-up occurs as wave breaking. For blow-up with positive probability, we derive lower bounds for these probabilities. Finally, the blow-up rate of these solutions is precisely analyzed.