2024
DOI: 10.55041/ijsrem29832
|View full text |Cite
|
Sign up to set email alerts
|

Stock Market Price Prediction and Forecasting Using Stacked LSTM

Supriya Raut

Abstract: Stock price movement is non-linear and complex. Several research works have been carried out to predict stock prices. Traditional approaches such as Linear Regression and Support Vector Regression were used but accuracy was not adequate. Researchers have tried to improve stock price prediction using ARIMA. Due to very high variations in stock prices, deep learning techniques are applied due to its proven accuracy in various analytics fields. Artificial Neural Network was deployed to predict stock prices but as… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?