2023
DOI: 10.3390/jrfm16030201
|View full text |Cite
|
Sign up to set email alerts
|

Stock Portfolio Management by Using Fuzzy Ensemble Deep Reinforcement Learning Algorithm

Abstract: The research objective of this article is to train a computer (agent) with market information data so it can learn trading strategies and beat the market index in stock trading without having to make any prediction on market moves. The approach assumes no trading knowledge, so the agent will only learn from conducting trading with historical data. In this work, we address this task by considering Reinforcement Learning (RL) algorithms for stock portfolio management. We first generate a three-dimension fuzzy ve… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 31 publications
0
1
0
1
Order By: Relevance
“…Em [Hao et al 2023] os autores tratam a tarefa de gerenciamento de portifólios por uma abordagem distinta da utilizada neste artigo, considerando algoritmos de Aprendizado por Reforc ¸o. O objetivo é treinar um agente com informac ¸ões de mercado para que ele aprenda estratégias de negociac ¸ão e venc ¸a o índice de mercado sem precisar fazer nenhuma previsão sobre os movimentos do mercado.…”
Section: Trabalhos Relacionadosunclassified
“…Em [Hao et al 2023] os autores tratam a tarefa de gerenciamento de portifólios por uma abordagem distinta da utilizada neste artigo, considerando algoritmos de Aprendizado por Reforc ¸o. O objetivo é treinar um agente com informac ¸ões de mercado para que ele aprenda estratégias de negociac ¸ão e venc ¸a o índice de mercado sem precisar fazer nenhuma previsão sobre os movimentos do mercado.…”
Section: Trabalhos Relacionadosunclassified
“…); simulation models (used to de-termine the trajectory of UAV flight ship routes, etc. ); and artificial intelligence models and fuzzy models (using, e.g., population algorithms such as ant colony [29], beetle swarm [30], and system-improved grey wolf optimization [31], as well as fuzzy logic algorithms such as fuzzy reinforcement learning [32], fuzzy particle swarm optimization [33,34], and fuzzy C-means [35]). Formal representations of these models implemented in the relevant methods of imperative programming allow for formulating and solving problems related to the so-called analysis of a problem situation, i.e., related to the search for an answer to the question of whether (what) set values of a set of decision variables guarantee a specific (extreme) value of the assumed objective function.…”
Section: Related Workmentioning
confidence: 99%