Stock Portfolio Optimization Using Mean-Variance and Mean Absolute Deviation Model Based On K-Medoids Clustering by Dynamic Time Warping
Mella Anugrahayu,
Ulil Azmi
Abstract:The tendency of investors to choose investments with maximum return and minimal risk causes the need for diversification in a portfolio to form an optimal portfolio. A lot of research on stock portfolio optimization has been conducted extensively, but not many have tried to apply machine learning concepts such as clustering analysis to accelerate the establishment of a model that can have a positive effect on the time and cost efficiency of portfolio management. However, clustering is only limited to determini… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.