2022
DOI: 10.3390/math10234449
|View full text |Cite
|
Sign up to set email alerts
|

Stock Portfolio Optimization with Competitive Advantages (MOAT): A Machine Learning Approach

Abstract: This paper aimed to develop a useful Machine Learning (ML) model for detecting companies with lasting competitive advantages (companies’ moats) according to their financial ratios in order to improve the performance of investment portfolios. First, we computed the financial ratios of companies belonging to the S&P 500. Subsequently, we assessed the stocks’ moats according to an evaluation defined between 0 and 5 for each financial ratio. The sum of all the ratios provided a score between 0 and 100 to class… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 27 publications
0
2
0
2
Order By: Relevance
“…The authors screen technical indicators as research variables from the literature review and transfer the four basic information (opening, highest, lowest, and closing price) of stock trading into the technical indicators. Researchers of this paper [11] propose a new approach for stock portfolio optimization using machine learning. The authors develop a machine learning model for detecting companies with lasting competitive advantages, also known as companies' moats, and use this information to optimize stock portfolios.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…The authors screen technical indicators as research variables from the literature review and transfer the four basic information (opening, highest, lowest, and closing price) of stock trading into the technical indicators. Researchers of this paper [11] propose a new approach for stock portfolio optimization using machine learning. The authors develop a machine learning model for detecting companies with lasting competitive advantages, also known as companies' moats, and use this information to optimize stock portfolios.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…Uma estrutura integrada de tomada de decisão multicritério usando conjunto fuzzy triangulares é desenvolvida para a construc ¸ão de portfólio, unificando as avaliac ¸ões de um investidor iniciante e de um especialista no mercado de ac ¸ões em [Bisht and Kumar 2022]. O trabalho de [Jiménez-Preciado et al 2022] teve como objetivo desenvolver um modelo de AM para detectar empresas com vantagens competitivas duradouras de acordo com seus índices financeiros, a fim de melhorar o desempenho das carteiras de investimento. Após calcular os índices financeiros das empresas pertencentes ao S&P500, uma avaliac ¸ão quanto às vantagens competitivas da empresa é atribuída a cada índice (definida entre 0 e 5), finalizando com a classificac ¸ão das empresas em três categorias.…”
Section: Trabalhos Relacionadosunclassified
“…Ambos os trabalhos citados têm, como o apresentado neste artigo, o objetivo de simplificar o processo de selec ¸ão de ac ¸ões para investidores inexperientes. Entretanto, esses dois trabalhos requerem o uso de procedimentos mais complexos, seja para obter e estruturar o conhecimento de especialistas, como em [Bisht and Kumar 2022], ou para obter dados, calcular índices e fazer a classificac ¸ão manual das ac ¸ões em categorias, como em [Jiménez-Preciado et al 2022]. Já a abordagem proposta por nós requer apenas dados disponibilizados publicamente que podem ser obtidos com razoável facilidade.…”
Section: Trabalhos Relacionadosunclassified
“…It's also hard to tell whether one variable will be weighted more or less than another variable. Therefore, to be precisely predicted, the stock price can reduce a lot of risk for a company, which is important [1,2,3].…”
Section: Introductionmentioning
confidence: 99%