Abstract:One of the basic assumptions of the classical dynamic lot-sizing model is that the aggregate demand of a given period must be satisfied in that period. Under this assumption, if backlogging is not allowed then the demand of a given period cannot be delivered earlier or later than the period. If backlogging is allowed, the demand of a given period cannot be delivered earlier than the period, but can be delivered later at the expense of a backordering cost. Like most mathematical models, the classical dynamic lot-sizing model is a simplified paraphrase of what might actually happen in real life. In most real life applications, the customer offers a grace period -we call it a demand time window -during which a particular demand can be satisfied with no penalty. That is, in association with each demand, the customer specifies an earliest and a latest delivery time. The time interval characterized by the earliest and latest delivery dates of a demand represents the corresponding time window. This paper studies the dynamic lot-sizing problem with demand time windows and provides polynomial time algorithms for computing its solution. If shortages are not allowed, the complexity of the proposed algorithm is O(T 2 ). When backlogging is allowed, the complexity of the proposed algorithm is O(T 3 ).2