An accessible, time- and cost-efficient microplate assay to quantify protein thiol redox state in percentages and moles relative to the thiol proteome (i.e., context) and other targets (i.e., array mode) would be invaluable for understanding how protein thiols regulate essential biological processes. RedoxiFluor achieves several key benefits (i.e., percentages, moles, context, array mode) in a microplate format. After robustly validating RedoxiFluor, comparative analysis reveals that key benefits are intractable to other immunological techniques. Moles is an unprecedented achievement. Proof-of-concept studies illuminating fundamental redox principles (i.e., specificity, context, and heterogeneity) through measurement alone demonstrate how RedoxiFluor can advance understanding. For example, target specific protein thiol redox state changes are: (1) context specific (i.e., redox stimulus dependent); (2) selective (i.e., redox stimuli oxidise select targets); and (3) heterogenous (i.e., target responses vary markedly). RedoxiFluor is a powerful new tool for advancing a far-reaching and influential field: protein thiol redox biology.