The present article investigates the overall bed permeability of an assemblage of porous particles. For the bed of porous particles, the fluid-particle system is represented as an assemblage of uniform porous spheres fixed in space. Each sphere, with a surrounding envelope of fluid, is uncoupled from the system and considered separately. This model is popularly known as cell model. Stokes equations are employed inside the fluid envelope and Brinkman equations are used inside the porous region. The stress jump boundary condition is used at the porous-liquid interface together with the continuity of normal stress and continuity of velocity components. On the surface of the fluid envelope, three different possible boundary conditions are tested. The obtained expression for the drag force is used to estimate the overall bed permeability of the assemblage of porous particles and the behavior of overall bed permeability is analyzed with various parameters like modified Darcy number (Da * ), stress jump coefficient (β), volume fraction (ε), and effective viscosity.
Mathematics Subject Classification (2000). 76D07 · 76S05.