A simulation model "DanStress" was developed for studying the integrated effects of soil, crop and climatic conditions on water relations and water use of field grown cereal crops. The root zone was separated into 0.1 m deep layers of topsoil and subsoil. For each layer the water potential at the root surface was calculated by a single root model, and the uptake of water across the root was calculated by a root contact model. Crop transpiration was calculated by Monteith's combination equation for vapour flow. Crop conductance to water vapour transfer for use in Monteith's combination equation was scaled up from an empirical stomatal conductance model used on sunlit and shaded crop surfaces of different crop layers. In the model, transpirational water loss originates from root water uptake and changes in crop water storage. Crop water capacitance, used for describing the water storage, was derived from the slope of pressure-volume (PV) curves of the leaves. PV curves were also used for deriving crop water potential, osmotic potential, and turgor pressure. The model could simulate detailed diurnal soil-crop water relations during a 23-day-drying cycle with time steps of one hour.During the grain filling period in spring barley (Hordeum distichum L.), grown in a sandy soil in the field, measured and predicted values of leaf water and osmotic potential, RWC, and leaf stomatal conductance were compared. Good agreement was obtained between measured and predicted values at different soil water deficits and climatic conditions. In the field, measured and predicted volumetric soil water contents (0) of topsoil and subsoil layers were also compared during a drying cycle. Predicted and measured 0-values as a function of soil water deficits were similar suggesting that the root contact model approach was valid.From the investigation we concluded: (I) a model, which takes the degree of contact between root surface and soil water into account, can be used in sandy soil for calculation of root water uptake, so that the root conductance during soil water depletion only varies by the degree of contact; (II) crop conductance, used for calculation of crop transpiration, can be scaled up from an empirical single leaf stomatal conductance model controlled by the level of leaf water potential and micrometeorological conditions; (III) PV curves are usable for describing crop water status including crop water storage.2 Jensen et al.