ABSTRACT:Traditional geospatial information platforms are built, managed and maintained by the geoinformation agencies. They integrate various geospatial data (such as DLG, DOM, DEM, gazetteers, and thematic data) to provide data analysis services for supporting government decision making. In the era of big data, it is challenging to address the data-and computing-intensive issues by traditional platforms. In this research, we propose to build a spatiotemporal cloud platform, which uses HDFS for managing image data, and MapReduce-based computing service and workflow for high performance geospatial analysis, as well as optimizing autoscaling algorithms for Web client users' quick access and visualization. Finally, we demonstrate the feasibility by several GIS application cases.