Perforation azimuth has an important influence on the nucleation, propagation path and morphology of hydraulic fractures. In this paper, the true triaxial hydraulic fracturing simulation experimental system is used to analyze the hydraulic fracture morphology and propagation path under different perforation azimuth angles. With the increase of the azimuth angle of perforation, the stable fracture propagation pressure of the fracturing sample also increases. When the azimuth angle of perforation is 0°, the propagation pressure is about 18 MPa, and when the azimuth angle of perforation is 90°, the propagation pressure is about 26.5 MPa, increasing by nearly 47.22%.