One of the critical warehousing processes is the order-picking process. This activity consists of retrieving items from their storage locations to fulfill the demand specified in the pick lists. Therefore, the storage location assignment affects the picking time and, consequently, reduces the operating costs of the warehouse. This work presents two alternative mixed-integer linear models and an adaptive multi-start heuristic (AMH) for solving the integrated storage location and picker-routing problem. The problem considers a warehouse with a general layout and precedence constraints for picking according to the products weight. Experimental work confirms the efficiency of the proposed reformulations since we found out a total of 334 tested instances and optimal solutions for 51 new cases and 62 new feasible solutions. The proposed AMH improved more than 29% of the best-known solutions and required an average execution time of 117 s. Consequently, our proposed algorithm is an attractive decision-making tool to achieve efficiency when solving practical situations in a warehouse.