Forest plantations most likely promote exotic plant invasion. Using an in situ monitoring method, this study investigated the traits correlated with growth and reproduction of an understory invader, Phytolacca americana L., and ecological factors including understory irradiance, soil stoichiometry and microbial patterns associated with these traits in different exotic plantations of Robinia pseudoacacia L. and Pinus thunbergii Parl. at Mount Lao, Qingdao, China. We found that the traits of P. americana underneath the R. pseudoacacia stand might be situated at the fast side of the trait economic spectrum. The R. pseudoacacia stand appeared to “nurse” P. americana. Furthermore, we intended to explain the nurse effects of R. pseudoacacia stands by examining their ecological factors. First, the R. pseudoacacia stand created understory light attenuation, which matched the sciophilous feature of P. americana. Second, the soil beneath the R. pseudoacacia stand might benefit P. americana more since the soil has greater resource availability. Third, a higher microbial diversity was found in the soil derived from P. americana underneath the R. pseudoacacia stand. A greater abundance of plant pathogens was detected in the soil derived from P. americana in the R. pseudoacacia stand, while more abundant mycorrhizal fungi were detected in the P. thunbergii stand. We speculate that plant pathogens can defend P. americana from aggression from other understory competitors. The mycorrhizal fungi in the P. thunbergii stand might benefit P. americana while simultaneously benefiting other understory plants. Intensive competition from other plants might interfere with P. americana. The potential relationships between plant performance and ecological factors may explain the invasion mechanism of P. americana. The present study provides a novel insight on the facilitative effects of exotic tree plantation on an exotic herb through the modification of soil biota, with implications for the biocontrol of invasive species and forest management and conservation.