In this article, a deep reinforcement learning-based path-following control scheme is established for an under-actuated autonomous marine vehicle (AMV) in the presence of model uncertainties and unknown marine environment disturbances is presented. By virtue of light-of-sight guidance, a surge-heading joint guidance method is developed within the kinematic level, thereby enabling the AMV to follow the desired path accurately. Within the dynamic level, model uncertainties and time-varying environment disturbances are taken into account, and the reinforcement learning control method using the twin-delay deep deterministic policy gradient (TD3) is developed for the under-actuated vehicle, where path-following actions are generated via the state space and hybrid rewards. Additionally, actor-critic networks are developed using the long-short time memory (LSTM) network, and the vehicle can successfully make a decision by the aid of historical states, thus enhancing the convergence rate of dynamic controllers. Simulation results and comprehensive comparisons on a prototype AMV demonstrate the remarkable effectiveness and superiority of the proposed LSTM-TD3-based path-following control scheme.