Acute respiratory distress syndrome (ARDS) is a common and life‑threatening clinical syndrome, and seeking biomarkers of ARDS has been an area of continuing research. The present study hypothesized that alterations to certain immunogenic substances occur in injured lungs and are able to specifically bind with corresponding proteins in the blood, and that these proteins may be readily detected. To investigate this hypothesis, a rat model of ARDS was established by cecal ligation and puncture surgery, and an immunoproteomics approach, using serum as the primary antibody in a western blot analysis, was used with the aim of identifying immunogenic proteins in the injured lungs. Ingenuity Pathway Analysis (IPA) was used for bioinformatics analysis, and mass spectrometric analysis was used to identify a total of 38 differentially expressed immunogenic proteins. Bioinformatics analysis revealed that the top canonical pathways in which the identified proteins may be involved were gluconeogenesis I, glycolysis I, choline degradation I, NADH repair and heme degradation. IPA Biomarker Filter analysis with the terms 'acute respiratory distress syndrome/acute lung injury' was used to screen 13 proteins as candidate biomarkers. These proteins were described as antigens, and suggested that paired antibodies may be detected in the plasma of patients at high risk of ARDS. Analysis of these identified proteins may provide novel insights into the potential pathological mechanisms of ARDS.