This study investigated the microstructure and mechanical properties of hot-rolled and cold-rolled medium-Mn transformation-induced plasticity (TRIP) steel. The experimental steel, processed by quenching and tempering (Q & T) heat treatment, exhibited excellent mechanical properties for hot-rolled and Q & T steels (strength of 1050–1130 MPa and ductility of 16–34%), as well as for cold-rolled and Q & T steels (strength of 878–1373 MPa and ductility of 18–40%). The mechanical properties obtained after isothermal holding at 775 °C for one hour for cold-rolled/Q & T steel were superior to that of hot-rolled/Q & T steel. Excellent mechanical properties were attributed to the large amount of retained austenite, which produced a discontinuous TRIP effect. Additionally, the differences in mechanical properties correlated with the morphology, stability and content of retained austenite. The cold-rolled sample, quenched from 650 °C (CR 650°C) had extensive TRIP effects in the middle and late stages of the deformation, leading to better mechanical properties. The fracture modes of the hot-rolled sample, quenched from 650 °C, and the cold-rolled sample quenched from 650 °C, were ductile fractures, resulting in excellent ductility.