A series of stimuli-responsive fluorescent hydrogels were successfully synthesized via micelle radical copolymerization of hydrophilic acrylamide (AM), hydrophobic chromophore terpyridine-based monomer (TPY), and N-isopropylacrylamide (NIPAM). These hydrogels presented blue emissions (423–440 nm) under room temperature, which is caused by the π-π* transition of the conjugated structures. Once the ambient temperature was increased to 55 °C, the fluorescence color changed from blue (430 nm) to pink (575 nm) within 10 min, subsequently to yellow (535 nm), and eventually back to pink. The thermal-responsive properties are attributed to the transition of the TPY units from unimer to dimer aggregation via the intermolecular charge transfer complex at high temperatures. The hydrogels showed pH-responsive properties. The emission peak of the hydrogel exhibited a blue shift of ~54 nm from neuter conditions to acidic conditions, while a 6 nm red shift to an alkaline environment was observed. The hydrogels demonstrated an obvious change in fluorescence intensity and wavelength upon adding different metal ions, which is caused by the coordination between the terpyridine units incorporated on the backbones and the metal ions. As a consequence, the hydrogels presented a sharp quenching fluorescence interaction with Fe2+, Fe3+, Cu2+, Hg2+, Ni2+, and Co2+, while it exhibited an enhanced fluorescence intensity interaction with Sn2+, Cd2+, and Zn2+. The microstructural, mechanical, and rheological properties of these luminescent hydrogels have been systematically investigated.