Members of the genus Brucella are known worldwide as pathogens of wildlife and livestock and are the most common organisms of zoonotic infection in humans. In general, brucellae exhibit a range of host specificity in animals that has led to the identification of at least seven Brucella species. The genomes of the various Brucella species are highly conserved, which makes the differentiation of species highly challenging. However, we found single-nucleotide polymorphisms (SNPs) in housekeeping and other genes that differentiated the seven main Brucella species or clades and thus enabled us to develop real-time PCR assays based around these SNPs. Screening of a diverse panel of 338 diverse isolates with these assays correctly identified each isolate with its previously determined Brucella clade. Six of the seven clade-specific assays detected DNA concentrations of less than 10 fg, indicating a high level of sensitivity. This SNP-based approach places samples into a phylogenetic framework, allowing reliable comparisons to be made among the lineages of clonal bacteria and providing a solid basis for genotyping. These PCR assays provide a rapid and highly sensitive method of differentiating the major Brucella groups that will be valuable for clinical and forensic applications.Brucella spp. are pathogenic bacteria that infect a wide variety of mammalian hosts worldwide, often causing reproductive failure. The genus Brucella has classically been divided into six species based on host specificity, including B. abortus (cattle and bison), B. melitensis (goats and sheep), B. suis (pigs), B. canis (dogs), B. neotomae (desert woodrat), and B. ovis (sheep) (12). Two new species have been discovered recently in marine mammals (B. cetaceae in dolphins and whales and B. pinnipediae in seals) (10). Taxonomic limits of the marine clade, however, are not fully defined, and this group may represent one to three species (8, 18). B. abortus, B. melitensis, B. suis, and B. canis are well-characterized zoonotic pathogens, annually infecting Ͼ500,000 people worldwide (26). In the United States, the first three of these species are defined as select agents due to their pathogenicity and potential use as biological weapons (11).Despite host-based segregation, Brucella spp. have proven challenging to differentiate using molecular techniques. Brucella genomes are highly conserved, with Ͼ90% homology among species based on DNA-DNA hybridization (35), identical 16S rRNA sequences among all species (15), and Ͼ90% of genes sharing Ͼ98% sequence identity (16,27). Serological methods and biochemical testing of isolates allow differentiation of species and biovars. However, PCR-based methods have been used increasingly due to their accuracy, sensitivity, and speed of identification and the ability to work with DNA as opposed to highly infectious live cultures. A wide array of genetic polymorphisms can be assayed for the differentiation of Brucella spp., including the insertion element IS711 (2, 3, 29, 31) and genes of outer membrane proteins (7,...