2021
DOI: 10.48550/arxiv.2102.09253
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Strategic bidding in freight transport using deep reinforcement learning

Abstract: This paper presents a multi-agent reinforcement learning algorithm to represent strategic bidding behavior in freight transport markets. Using this algorithm, we investigate whether feasible market equilibriums arise without any central control or communication between agents. Studying behavior in such environments may serve as a stepping stone towards self-organizing logistics systems like the Physical Internet. We model an agent-based environment in which a shipper and a carrier actively learn bidding strate… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?