Injectable depot formulations are aimed at providing long-term sustained release of a drug into systemic circulation, thus reducing plasma level fluctuations and improving patient compliance. The particle size distribution of the formulation in the form of suspension is a key parameter that controls the release rate. In this work, the process of wet stirred media milling (ball milling) of a poorly water-soluble substance has been investigated with two main aims: (i) to determine the parametric sensitivity of milling kinetics; and (ii) to develop scaleup methodology for process transfer from batch to flow-through arrangement. Ball milling experiments were performed in two types of ball mills, a batch mill with a 30 ml maximum working volume, and a flow-through mill with a 250 ml maximum working volume. Milling parameters were investigated in detail by methodologies of QbD to map the parametric space.Specifically, the effects of ball size, ball fill level, and rpm on the particle breakage kinetics were systematically investigated at both mills, with an additional parameter (flow-rate) in the case of the flow-through mill. The breakage rate was found to follow power-law kinetics with respect to dimensionless time, with an asymptotic d 50 particle size in the range of 200-300 nm.In the case of the flow-through mill, the number of theoretical passes through the mill was found to be an important scale-up parameter.